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ABSTRACT

ThLs L- the ii Annual Tech~nical Summna-rt of the MIN~T Lincoln Laboratorv
exor into the parain..c sudy of diffusion-enhancement network'S for spatiot emI-

Doral groupng11 In real-time artificial viin. Suaitozenlorai "gouping phenonena
are examined in the co-wext of static and time-t-arying imagery. Dynamics that ex-
liibit s-tatic feature grouping on multiple scalet as a function of time and long-range
apparent notion betwaeen timie-marying inputs are developed for a biologically plau-
s-ible diffusin-enmancememt bilay-er. The architecture consists of a diffusion and a
Cloitra.--ilaiceinent laier coupl)ed b-, feedforward and feedback: connections: input
6. pro-k ide'i 1,, a separat e feat ure ext ract in- layer- The model is cast as an analog
circuit that 6s realizable in VLSI. the paramieters of -which are selected to satisfy a
psyclionhical database on apparent motion.
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1. INTRODUCTION

This study suggest- that diffusion-enhancement interactions play a fundamental role in human
preattentive perception. Understanding parallel netwo.ks that simulate such interactions is impor-
tant for understanding neurobiological findings and will suggest new experiments for researchers
in that field. Of special interest is the study of spatiotemporal networks because they aid the
understanding of the static and dynamic grouping of stimuli that occurs in and across the visual.
auditory, and _.omlatosensor. systems 1-37. Such grouping phenomena are also important in artifi-

cial vision systems '4-. During the past year. a biologically plausible network model 14-7] has been
refined and u-ed to explain some static and dvnamic grouping experiments from the psychophys-
ical literature. This diffusion-enhancement bilayer (DEB) represents the interactions between a
laver of astroc- te glial cellh and a neuronal layer. Long-range co,:munication is achieved via the
diffusion of K- throughout the electrically coupled glial layer. and percpt localization occurs in
the contrast-enhancing (CE; neuronal layer. These glial and neuronal layers are coupled by K-
currents leaking from glial endfeet in close proximity to the neuronal layer.

In order to explain the DEB model. the reader must understand some of the biological and
phychophy.icii result- tiat led to the development of this model. thus a review of some relevant
literature i.- pr:c,-tcd before the model itself i6 described. Numerical simulations performed with
the model are a,-o discussed.

The rf--i,- of examining the leak% diffusion layer in isolation from the CE layer are presented
firs-t. -_m n ci i,,, atil-ties of the isolated CE layer are demonstrated next: and work performed with
the full ntw.,. :.. whlicli reproduces bume of the described psychophysical results. is discussed last.
The simaiit ... -ctwIQ -uggest how the remaining phenomena will be achieved. enumerates some
of the prohI, :: - and :-uccesses of the study so far. and discusses work still to be done.



2. BACKGROUND: PSYCHOPHYSICAL PHENOMENA AND RELATED
NEUROBIOLOGY

Psychophysical experiments that are being modeled and neurobiology that could support such
phenomena are described in this section. Both psychophkysics and neurobiology provide data used
to set the DEB model parameters.

2.1 Psychephysical Results

2.1.1 Spatiotemporal Grouping Phenomena

The DEB model replicates the effects of both static and dynamic grouping. A striking example
of static feature grouping in the visual domain is demonstrated by Marroquin's diagram shown in
Figure 1 8. Notice how the dots in the diagram appear to group with their neighbors on greater
and greater scales over time as one stares at the center of the hexagon.

The simplest dynamic apparent motion effect is known as gamma motion and occurs when a
single light is turned on for a brief period of time and then turned off. Although the light is of a
fixed spatial extent. the perception is of a light that first expands and then contracts !1], as shown
in Figure 2.

New dynamic grouping phenomena emerge when two distinct stimuli interact over time to
form the percept of long-range apparent motion. In the human visual system apparent motion
can be demonstrated %%ith two lights of fixed spatial extent that are illuminated at distinct times
across a fixed spatial beparation (Figure 3). With different spatial separations. illumination times.
and interstiniulus intervals, the light can appear as two separate lights flashing. as one spot that
moves smootluh between two real lights, or as one spot that moves smoothly from the first location.
jumps. and continues mnoving smoothly to the second location !1.21. The most common form of
object motion, phi. giie,, no impression of a particular shape. while the contrasting beta motion
appears to be well-defined.

Similar effects can be achieved with tones in the auditory system [3'. Psychologists have
examined, in detail. the conditions that will produce these three distinct types of motion and
discovered that for fixed-flash duration! there is a clear range of onset-to-onset interval (SOA) 1

versus -spatial separation that will produce smooth apparent motion (Figure 4). If one shortens the
SOA. light,, begin jumping rather than smoothl moving between each other. while a still shorter

'The onset-to-onbet interval is often referred to as the "stimulus onset asynchrony" (SOA) and is
defined as the time between the onset of two successive applications of a stimulus. Related is the
interstmmlus intermal (ISI) that ih defined as the time between two successive stimuli. Thus ISI -
stimulus duration = SOA.

3



Figur( 1. Static feature grouping on multiple scales: evidence for the existence of a group.
ing proccss in the visual system .

176981

STIMULUS PERCEPT

FLASH

DURATION

SPACE (Degrees of Visual Arc)

Figure 2. Gamma motion.
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l IINTERSTIMULUS INTERVAL (ISI)

STIMULUS ONSET ASYNCHRONY (SOA)

SPACE (Degrees of Visual Arc)

Figure . Long-range apparent motion. The filled Tectangles represent sources in space-
tne sfparation., that produc( the illusion of long-range apparent motion. The empty
rfctanl, repr(snt isources that are ignited too soon for the spatial distance or are too far
aulafvt the qi en IS]. The center rectangle occurs soon enough to give the appearance
1". smoti, motion from tht Ikft-most rrctanglc to the first shaded square. a short jump to
• s# .,,,d shadfd square. foliou-ed by smooth motion to the destination. while the upper
-. ,tan;, ('hibits purc smooth motion.

SOA cau-e- tOw ligit. to appear to flash simultaneously. If one lengthens the SOA beyond an
acceptabiv lini. the lights flash independently of each other. Similar conditions can be created by
varvinT tiix -;v .,al -eparation of the two stimuli.

Ono th:- .ffect was discovered, the next step was to calculate rate of motion. Unfortunately.

it is unclar hes. t to calculate velocity of the illusory figures. Mechanical theory would plot
I- = -d . : in these experiments the distance traveled is clear, but the interpretation of
time ii- .i 1. :1 i6 used (the tine between when the object was last seen in its initial location
and whel. it -nlwed up in its final location), cases exist for illusory objects with infinite velocity.
SOA i. t:a .', :' reasonable choice. but it has been shown that stimulus duration affects apparent

motion. !,,ic,- 1 argues that this is as reasonable a plot as any: this report agrees and displays
it in Fiwu'i ' ,, comparison purposes. It is unclear. however, whether the relationship between

velocity and .itial separation is linear.

To f:rt : understand apparent motion. other psychophysical experiments have been per-

formed: i:n w tiu isual domain all involve additional stimuli. Split motion effects are demonstrated
with thre,' i.'- of fixed spatial extent: the center light is illuminated and extinguished. followed
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by illumlinating and extinguishing the two outer lights, If the two outer lights are equidistant to
the center light, the latter appears to split and miove to both outer lights. If the two outer lights
are at staggered distances. the center light appears to move to the closest light (Figure 6). Also. if
the equidistant version of the display is placed in the periphery of the visual field. the center light
appears to miove towards the light farthest fromn the fovea.

EQUIDISTANT NONEOUIDISTANT

SPACE (Degrees of Visual Arc)

Figure 6. Split effects. Illuminating one point source followed by illuminating two
equidistant point sources cause the first to appear to split and move to both of the later
sources. If these are not equidistant to the first. movement is only to the closer of the
pair.



The opposite of the spit fect is the ner-ee fc- in whch Emt tN te o ater gks. :-h-
the center light are iluminated and ex g.sh d. If the two outer Egs are tidistam to the
center. they both appear to nzove to the ce-r H;-ht and merge with .. If the two oter es are
not equidisant. only the one that is ckser appears to mtiv to the center OFigmr 7). Owe apf
if the equidistant display is placed in the periphery of the -isul fied. the otemost igb appears
to move toward the center.

EGOeS -ak DcOMENDSTMr

I I

SPACE (Degrees of Visuad Arc)

Fkqurt 7. Jrf t ffccls. ilumnatlnp fro point couirs equidistant ftm a third, later-
illuminated point sourct giros the apparance of the tro m eirgm and kcommna one. If the
original pIr is not cquidistant from the third point sourr. o.71l- Me closer of the two u-ll
am'J';r to inort.

Another important multielenient stiniulu- studied causes the Ternus effect. which illustrates
that more than one distinct motion percept can be achieved from the same display by altering
subtle aspectu. In the Ternus display. two frames with three aligned lights each are illuminated and
extinguished in succes-sion. The frames are aligned so that two of the three lights occupy the same
space. and the third appears alternately on the left and right of the central two objects. When the
ISI is short. the third light appears to move around the central two objects (element motion). but
when the 11 iS6 long the three appear to shift as a coherent group (Figure 8).

Although the cause of these motion effects has been debated for nearly a century. it is known
that they do not occur at the retinal level, as evident from a variation on the basic long-range
apparent motion experiment. In this variant, known as dichoptic presentations, the first light is
presented to the subject's left eye. and the second light is presented to the subject's right eye-
Apparent motion is experienced. indicating that spatiotemporal interactions occur at the cortical
level. In addition and based on the split and merge experiments performed in the periphery, these
effects occur after the % isual svstem has compressed (or down-sampledi the periphery in favor of the
fovea. i.e.. at the usual cortex. Such sampling and compression occur in at least two places in the
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SPAC Mge sfVulAc

Fr-pri T-% R. .e. Jannimih at9 shifin.a arops of thre point soures produces the
t Lzof A, on. in; effmen! rroorion or ell thre in anouew motion. The percept changes with

hera gaq ISL.

visiai srsten: !. Fi-st. tile retina itself contains a nonuniform population of rods and cones: the
de-e-t iua:- occ'r- in the fovea. Second. the receptive fields of the retinal ganglion cells are
n-arkedir -izaa'-= :i the fovea than in tihe periphery- hence, the well-known cortical magnification
of the foea ;:::: :pres-ion of the perplhery. Based on neurobiolog" and psychophysics. it seems
evden 1hal t.- -'si .- rate of apparent motion iie in the visual cortex.

Thi:- !'; .:., process is not restricted to sight. In the tactile area. if two vibrators agitate
tile skin w:.-! : -:..a1 ISI. the subject experiences a single vibration between them. As in the visual
donain. r* t-. - -,ccurs not in the skin but in the c rtex: if the skin between the two vibrators is
localiv anae-,:.. ztG. tile effect is still experienced '10'. Similar experiments have been devised for
the audit M,.-. ;mdd-inilar result, were reported. Most bizarre are the intermodal experiments
in which ap;,:- nx:on is perceived between a sound and a light source '3'.

2.1.2 U-.,ful Psychophysical Parameters

P-, ,;,- cal literature suggests that the structure of the DEB model and long-range ap-
parent Iit1, A. 1111pies continue to support this diffusion concept and begins to suggest rates at
which it -t,;; . .ccur. Figure 4 provides spatial and temporal parameters to which the model
should coido:m The lower curves suggest that communication time varies with distance. while the
upper cur% - - ..- t that object memory will fade after a time and that this fade occurs faster over
greater di-.ta, - Buth are considered indicative of a leaky diffusion network in which stimulus
activit- nr-i r - - and spatially expands,. then falls and contracts: the DEB network was designed
to prodct. i -.. ffec. For a fixed (small spatial separation. there should be a range of SOAs in
which lutI,, .... f1 l, perceived, and outside that range no motion should be realized.

9



It is difi cut to directly relate the model time and space scales to biological time and space.
so ratios are examined that allow units to be ignored. One ratio considered is that of the longest to
the shortest SOA for whic smooth motion occurs at a fixed spatial separation. Figure 4 suggests
that this ratio is restricted to S 4 with the ratio decreasing as the spatial separation increases. It
is not certain how to compare psychophysicai with model-predicted velocities, because there is still
no way to interpret the velocities of apparent motion.

2.2 Biological Considerations

Consider that the above psychophysical effects have two salient processes: long-range com-
munication that facilitates interaction of features generated by the inputs (point light sources in
the visual domain) and a focusing process that enables objects in apparent motion to have a defini-
tive location. This section discusses the neurobiological elements that are believed most likely to
provide the foundationb for both these processes. Because it has already been suggested that static
and dynamic grouping occurs in the cortex. the search begins there.

Te cortex is divided almost evenly between nonneuronal and neuronal cells. It is felt that
the largr"t ca::. of nonneural brain cells. the neuroglial. is the site of the long-range communication
process. while neuronal networks provide focusing.

2.2.1 Astrocyte Glial Cells

Once thw,,ight of as only providing passive physical support. neuroglial cells now appear to
play an 'act:xi rok in maintaining normal brain physiology" i1. Concentration is on the astrocyte
glial cell- lbecwi e they are known to provide long-range communication between coupled astrocytes
(Figure 9 . A.tihough to date such coupling has not been directly demonstrated in vivo (Kettenman
and Rani-o:..2 suggest that this is due to technical difficulties), there is some evidence that it
occur:.- awz ",re i6 direct evidence for coupling in cultured astrocyte cells. Such communication
is not rav-. deed. Kettenman and other!s have observed that **mammalian astrocytes in cell
culture ,T, t.ly coupled to one another electrically" and that -'qualitative studies have shown
that cu:m1ire,: -trocvtes form a highly coupled electrical syncytium"[12" that is believed to provide
the lon -a: _ -oninunication necessary to support the above psychophysical phenomena.

2.2.2 X'euronal Networks

.Main in the visual cortex are known to derive their input from networks of neurons. In
Hubel ! . -:,.:.. cell-, (which respond to oriented lines) are postulated to be made up of a hierarchy
of lower-,-,r,w: radially symmetric, center-surround cells. Similarly. complex cells (which respond

2Low nm, -jeri. i. weight dye passes between adjacent cells 113'. and glial networks are postulated to
act a!- p,,ta--rnm spatial buffers "11.12.14'.

10



Figure 9. Cat retinal astrocytes. -The radiating fibers enable astrocytes to interact with
neurons..." [11/.

to oriented lines in a wide receptive field) and end-stopped cells are made up of a network of
simple cells. Also, directionally tuned, motion-sensitive cells are postulated to consist of inhibitory
and excitatory connections. Similar inhibitory and excitatory interconnections are used in the CE
neuronal network where cells are assumed to be self-exciting and latterly inhiL. ing within the layer.

2.2.3 Interactions

Astrocyte glial cells are known to interact electrically among themselves and with neurons as
well; the nature of that interaction is now considered.

Kettenman and Ransom [121 discovered that in cultured astrocyte syncytia, the resistance of
the electrical gap junctions between astrocytes is not voltage dependent over much of the membrane
potential fluctuation, thus a charge flow model examining intra-astrocyte communication should
be independent of the membrane potential of the astrocytes. Futhermore, it is known that "glial
cells.. .have a high potassium concentration and have negligible ionic permeability for ions other than
potassium" 115:; therefore, current flow is modeled through glial cells as transfer of potassium ions
to or from the cell in a manner obeying Ohm's law. When this process is expanded to encompass
current flow in a network of glial cells, the motion of these ions can be approximated with a diffusion
equation,

11



Neuroglial-neuronal interactzons. Astrocytes are present near specific
WI take up and metabolize specific neurotransmitters 1111.
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It is further proposed that a glial syncyt. provides long-range communication between neu-
rons in a layer via transmission of potassium and other ions. It has been shown that "variations in
K- exrace Iular have profound effects on neuronal excitability. modulating such processes as synap-

tic transmission and the initiation and propagation of action potentials7 [14. Such [K-I variations
can be realized near the leaky endfeet of astrocytes that are in close proximity to neuronal synapses
(see Figure 10). This report is not the first to propose such an interaction. in 1965. Hertz 116] pro-
posed "a mechanism...in which the potassium ions. which have been lost from one nerve cell during
its activity, are transported through neuroglia cells to the outer surface of another ner--a cell. which
is then depolarized and stimulated: that is. a neuronal-neuroglial-neuronal impulse transmission.-
Hertz continues: "Potassium ions which have been released from an active area are transported
through neuroglia cell- to the outside of other neurones [sic]: these are in turn stimulated and
potassium ions are released. to be transported actively through other neuroglia cells. In this way
the spreading depression is propagated across the entire cortex more rapidly than can be explained
by a diffusion." The DEB model explicitly uses such interactions to spread and reinforce the charge
distribution in a diffusion layer.

2.2.4 Useful Biological Parameters

Odette and Newman '14" note that glial cell endfeet "can contain up to 951( of the total cell
conductance." Thib is important to determine how -leaky- the diffusion process should be.

Kettenmann and Ransom 12 have examined astrocyte coupling by electrically stimulating
(via KCI inlection.-1 one glial cell and measuring its voltage and that of the neighboring cell. The
ratio of theze xultages are fit to an exponential. which approximates the steady-state decay in a 1-
and 2-D syncytiur: = P .where d is the distance from the injection, and L is the length
constant. Kettenman and Ransom 112" measured astrocyte L in vitro to be 80 to 100 pm. L can be
used to relate the DEB model to physical size of the biological networks and is related to the ratio
of the conductances representing the ratio of Ggg to G9 in Section 3.1. Further. L is not related
to the 1-D model explained herein as it is believed that the 1-D length constant would have to be
significantlh greater than the 2-D. Indeed, experiments with restricted 2-D syncytia have L values
that are greater than their full 2-D syncytia counterparts '12'. L is expected to be more valuable
in the context of the 2-D experiments.

1l.



3. DIFFUSION ENHANCEMENT BILAYER MODEL

3.1 DEB Network Architecture

The DEB model consists of two processes that mirror the two salient psychophysical processes
mentioned in Section 2.2. i.e., a diffusion layer that facilitates long-range interactions via local
connections and a focusing layer that provides the sensation of a localized object traversing a
spatial separation. In this model, featural input is presented and preprocessed by the sensor before
passing it on to spatiotemporal groupirg. In the case of the primate vision system, both center-
surround processing and logarithmic spatial mapping occur before grouping begins in the cortex [9].
Following feature extraction, activity is input to the diffusion layer that interact. with a localizing
CE layer. which periodically samples the state of the diffusion laver; its output is fed back to
the diffusion layer to provide support for new input and facilitate sustained interactions. This
report proposes that a motion detection system, such as that of van Santen [17] or Waxman [18],
detects the smooth motion of the activity maximum at the output of the CE layer and causes the
sensation of motion in the psychophysical experiments. Also, activity prompted by a single input
at first grows and eventually dies down. so that after a period of time grouping is no longer possible
(Figure 4). Tlis is an effect of the limited time span of featural input from a single feature, the
leaky diffusion layer. and the imposition of decay on the feedback from the CE layer.

With thi: high-level description of the network in mind. a 1-D circuit form of the DEB model
is illustrated in Figure 11. Note the two layers - a diffusion layer that permits long-range charge
interactions and a CE layer that localizes the charge distribution from the diffusion layer and
produces impro vd SNR via the feedback pathways. Currently, the electrical model is simulated
by integrating tit governing equations also shown in Figure 11. A separate input layer of feature-
sensitive neur. n provides activity to the diffusion layer via glial cell endfeet. Determining the
profile of tli .. -- krce and comparing it to the biology is a major thrust of our research and is
discussed in >,-', n 4.2. Glial endfeet also bidirectionally carry feedforward and feedback activity
(i.e.. charge Z .

The diff, i-., . layer of the DEB model is governed by three coupled differential equations based
on Ohnfs law: -I, first represents the spatially coupled diffusion layer:

g9 g g S Q"m: e-2g [Q(.'~) Q('-I) - 2Q(')] - G 9 )

Gage r[C 1 G9  Qrc _QO](

C9  Ce e g C, 9  C, g

This eti . n contains several parameters that can be considered independent of the other
coupled ecpa ..... -, Conductivity Ggg controls the speed with which charge Qg is distributed
throughout i... er. while G9 controls how rapidly charge leaks into the environment. Together,

17
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conductivities G., and G9 determine the spatial extent over which charge can spread in the diffu-
sion layer. The other two equations govern charge input to the diffusion layer as provided by the
featural input neurons 'Equation (2)* and feedback from the CE neurons (Equation (3)].

dO(i) Ggi [Cg Q, QU] (2)

dt C9  C - •

dQ, (i) = _-" o [Lg Q,) I O U] (3)

dt C9 c '9"

Conductance G., controls the rate at which new inputs affect the charge on the diffusion layer.
Gg, controls the rate at which the CE layer feels the effects of developing charge distributions on the
diffusion layer, as well as the rate at which feedback from the CE layer modifies the diffusion layer.
Tile capacitors represented in all three equations store the distribution of charge in the diffusion
layer C9 . and at the interfaces to the input C, and the enhancement layers (C,).

The charge in the CE endfeet is periodically sampled 3 by the CE neurons. which process
activity on a shorter time scale than the diffusion layer. The sampled charge is contrast enhanced
via a network originally formulated by Grosbberg 19. and the output from this network is fed back
to the facing endfeet. The equation governing this system of N neurons is

A = -AQ,- - Q, f(Q -), - BfI(Q ).(4)
d t k- .

where

=CQ'-'Q1 OsQ<_QI

f(Q) = IQ Q1 < Q,()

Equatiun -41 can be rewritten as a shunting short-term memory model with charge limited
to the range O.B. Depending on theschoice of parameters. the rapidly attained equilibrium can
either pick the node with maximal charge or contrast-enhance the charge across the layer. The
latter prupeltie.s are of interest here where constant signals are suppressed. noise fluctuations are
quenched. and all node. of nearly maximal activity are enhanced. In any case. the dynamics lead

3Periodic sampling in time b the CE neurons can be identified with the refractory period of neurons
that are pha.,e-locked in a layer.

19



to a normalization of activity across the layer. with total equilibrium activity equal to E = B -
When in this domain, the nodes for which activities fall below

Q{)= (6)

for a sufficiently large time will be forced to lose all activation. i.e., they will be quenched.

Because feedback reactivates the diffusion layer, even once the original input is off. there is
the need to dampen the feedback amplitude over time. Without this step a single light will be
sustained in memory forever. This problem is resolved by forcing the parameter B in Equation (4)
to decay with time beteen inputs to the system. \Vhen a new input stimulates the visual field,
the CE layer is reenergized and B is reset to its maximum value. Between inputs this decay is
modeled as

B = B,,,D'. (D < 1) (7)

or

B =4 (BYZI _ t2 (8)

where D ,< 1. and ( (x) is a threshold linear function equal to a'. if x > o and 0 otherwise. (To
date. most experiments have set o = 0.)

3.2 Relationship to Biological Networks

A number of DEB model components have direct correlates in biology. Capacitor C' represents
a neuronal-astroglial interconnect that i6 locally excited by presented features. A feature-sensitive
neuron fires: as it repolarizes K- is released into the extracellular compartment. (The input source
function described in Section 2.1.1 tries to model this charge release.) K- ion pumps bring K- onto
C. which represents a highly permeable endfoot of an astrocyte glial cell (cf. K--spatial buffering
[151). Here the K- is freely diffused via ion currents within glia (with membrane capacitance
C9) and forms a network through electrical gap junctions between astrocyte glial cells 112j. The
interglial connections are represented by the conductors Gg9 .A portion of the K" is diffused out of
the cells at endfeet to an upper. CE neuronal layer. which is excited by the increased extracellular
K- concentration. This astroglial-neuronal interconnect is represented by Ce. It is hypothesized
that the neuronal layer interacts within itself to contrast-enhance its own activity further releasing
K- as it fires. It then feeds this contrast-enhanced K- profile back to the glial layer via the same
endfeet. and thereby reinforces the charge distribution in the glial network. particularly near the
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charge maximum. The output of the CE layer also provides the basis for the percept of a compact
form in smooth motion.

3.3 Alternative Models

One interesting alternative model for long-range apparent motion was proposed by Grossberg
and Rudd "20:. Their basic model elements that are responsible for creating continuous motion
paths from spatially disparate inputs are very similar to those currently being studied. Essentially,
localized inputs (e.g.. flashes of light) are assumed to excite a spatially extended Gaussian acti-
vation pattern of fixed scale. By combining a preprocessing stage, which detects spatial gradients
of brightness with a temporal change detector. their input functions grow and decay over time.
When this growth function is used to excite the Gaussian activity pattern, one obtains a fixed-scale
Gaussian activity wave with amplitude that grows and then decays. Grossberg and Rudd demon-
strate that if spatially separate inputs are flashed at different times, then for an appropriate scale
Gaussian the two activity waves will merge into a single activity hump. the maximum of which
slides continuouslly from the position of the initial to that of the final input. They then assume a
separate contrast-enhancing process detects this moving maximum.

The DEB model shares the two essential elements of the Grossberg-Rudd model, i.e., a spa-
tially extenaed response to an input that evolves over time. followed by a CE process that localizes
the response,: however, where Grossberg and Rudd assume a fixed-scale Gaussian response to an
input, the DEB utilizes a diffusion procebs that responds with increasing scale as a function of time.
Both niodei, ,e other earlier procesteb to determine the dynamic nature of the input function
responsible i'r exciting the activity profiles that will interact with one another.

Anotmer altrnative model. introduced by Waxman et al. 118], is the short-range motion
process. the t.. ial concept of which is the temporal growth and decay of a Gaussian activity
wave in re, -n- o a transient input. For noninteracting inputs (i.e.. a Gaussian wave with scale
smaller tha:k ino pacing of inputs) this process provides a means to extract directly the speed of
moving iea:i,- %\'ien the features are close to one another the waves do interact, and in so doing
they interp'-ial, tie trajectory between inputs.
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4. NUMERICAL SIMULATIONS

4.1 Overview

To understand the numerical simulations performed over the past year. a brief historical
perspective is provided. Prior to this study differential equations (governing a much simpler model)
were simulated by reproducing the effects of individual terms. In the case of the diffusion layer,
activity was literally spread by using Gaussian convolution. In the case of the CE layer, the feedback
point was determined by masking out areas of negative or zero Gaussian curvature and negative
mean curvature (where the slope of the activity was zero) and selecting the central point of the
surviving. locally maximal plateaus '4-. The differential equations were integrated directly, thus
removing one possible source of error when simulating the network. In addition. a fully parallel CE
network. which will be easier to implement in VLSI than the curvature masking mechanism, has
been adopted (and adapted) with the added benefit of providing an adjustable distributed feedback
to the current diffusion layer. Moreover. the dynamics of the activity flow along the endfeet that
connect the layers are included.

Several tools were developed for understanding the complex dynamics of this network. Among
these. the concept of the ideal input" (discussed in Section 4.2) and how the definition of ideal
changed with the understanding of the network and the appreciation of its subtleties. Simulations
performed on the diffusion layer in isolation are presented. the CE layer in isolation is discussed.
and the interconnected bilayer is considered.

4.2 Ideal Input Source Function

When a feature is detected by the input layer of neurons. they fire for some period of time and
release K- ions into their environment. Thus. an input is characterized by a charge source that is
a functiun of time. Because the smooth motion of a unique maximum between two input locations
is to be modeled (see Figure 3). an ideal input can be generated by searching for that input source
function that produceb the most rapid motion between the two inputs without producing multiple
maxima. This is the essence of the current definition of ideal input, and it remains unchanged
throughout the di,,cussion. (In principle, it is preferable to use the actual K- release rate from
neuron-. howe% er. such measurements are not readily available.) Starting from the known profile of
a Gaussian distribution of activity on all three layers in proportion to the ratio of the capacitors4

centered at the first input location, the search began for an ideal input at a displaced location
that would satisfy the design constraints. This ideal input is designated as a first-generation ideal
input. If this ideal input is used to generate the initial activity profile and reexecute the search at

4Experuineiat, nut prebented here indicated that this was a reasonable approximation to the distri-
bution of acti' itx throughout the network after presentation for a limited period of time.
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the second location, a second-generation ideal input is created. This procedure is iterated until the
ideal input source function converges.

The ideal input was considered in several different domains in order to better understand each.
and its definition was extended as new effects were discovered. The most significant variations are:

1. Tight constraint (TC)

* Relevant to both the isolated diffusion layer and the entire network

* Ideal for a range of spatial separations between two inputs

* Requires a unique activity maximum on the glial enhancement endfeet at every
integrated time instant

2. Relaxed constraint (RC)

" Relevant to entire network

" Ideal for a range of spatial separations between two inputs

" Unique maximum fed back from CE layer endfeet

3. Extended relaxed constraint (ERC)

* Relevant to entire network

* Ideal for a range of spatial separations

9 Unique maximum fed back from CE layer

9 Maintains final position

4. Simplified extended relaxed constraint (SERC)

* Relevant to entire network

* Ideal for a single spatial separation

* Unique maximum fed back from CE layer

* Maintains final position of activity maximum after it has moved.

The first variation (TC) was designed to examine the conditions that would cause an isolated
diffusion network to exhibit long-range apparent motion effects (Figure 3) for a range of spatial
separations between inputs. The second variation (RC) was developed from TC when it was
considered that the output from the feedback layer should serve as input to a separate motion
extraction network. It is relaxed because it is possible to have multiple maxima at the enhancment
endfeet of the glial layer between the times when the CE layer samples this layer. In addition the
CE layer quenches low-level noise containing multiple maxima when in the presence of a strong
signal.
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The third variation (ERC) adds the constraint that after the maximum has moved from the
first to the second location, it must remain there. This constraint was added when it was noticed
that the activity peak. after arriving at the second location, would move back again towards the first
feature location. Although this was always present in the TC ideal inputs, it was more pronounced
when the full network was connected with feedback. It was necessary to choose the minimum charge
needed at each time to maintain the maximum at its final position.

Finally. when ERC created a difficulty. requirements were simplified (the fourth variation,
SERC) so that the ideal input would work for a fixed distance. This greatly improved the in-
teractive nature of the software development system: the search time for the ERC variation (one
generation. 150 time units) is on the order of 4 hr on a Sparcstation 1+. while the SERC search
time is about 20 nin. For reference. 150 time units of network execution time (no search) requires
a few seconds to calculate.

4.3 Diffusion Network in Isolation

A, noted in Section 1. the reporting period began by examining the isolated leaky diffusion
network. InitialN it was desirable to verify that network dynamics could replicate phenomena
discussed in Section 2.1.1 and to gain an understanding of the effectb of the individual network
parameters.

Electrical network theory states- that the ratio of the capacitors largely determines where
charge i6: tor ,i v. ithin the network. It waz- di.covered that by choosing C. - 10 x C,. C9 .. 10 x Ce.

rapid spatial d.-z;lutii is possible. \Vhen (', i. set an order of magnitude lower, charge is isolated
in a small reg.iwi obout the input location. When C is set higher. interactions occur so rapidly that
features quick1'. ",ash uut. In addition. simulation time increases drastically since the integration
step mut, thin -. reduced in the numerical integration routines.

G,,enio- a. the astrocyte glial cell potassium leakage to the extracellular environment.
which b11,,, - ge.t- should represent a little more than .5' of cell extracellular conductance
and al-u ,:, teia. -patial distribution of charge. Independently it was discovered that setting
G9 .Ju , produces activation profiles with distinct maxima that still equilibrate after a
reasonat pw of time. Choosing G. : 0.1 G. leads to "washed-out'" maxima due to loss
to the ext:,, .... ir compartient, while choosing Gg -- 0.001 AG' causes activity to be trapped

entirelh in u , d layer.

Wo:., pa:.' .. eter- set at, above. TC is used as a tool to determine an ideal input that produces
effect- . , .1e lung-range apparent motion effects for spatial separations of 3 to 13 nodes. A
first-genvir.ti, C ideal input is shown in Figure 12. The alternating large/small input is caused
by the :c, , ... igorthni" that administers as much charge as possible at each time unit. Since
doublinra ... ber uf integration time steps doubles the frequency of this alternation, it is not
considerol ... :ant but rather an artifact of the method used to find the TCideal input. On the
other ldii. . rumicr hcale scalloping pattern is important and is retained at nearly the same
frequeia.. ,. the imniber of time steps is doubled. This is due to the constraint that the ideal
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input muan cause snmw nin for all spatial dIruei in tiw ym upo(3 to 13 uod~s Ea&i oC
the smaller displacement arivrs at its fial desition sooer thana the iar~r -i--ceens. and
once it does it no m ilonge ewes the calculation. wVhid respook hr auistbe h axiinum
quantity of chare for the remainder of the rem. ,ki in soon spam of aacwr.
Gien this ideal input. the kiugrage apparent mom ei , can be reca edform a seperatim
indi%-idual. and the speed at whieh the singk maxnin mores firw its initial to hal locadim
can be examined. The rate of mion is showna in F-4ur 13- Unkituitek this is arn k a first-
generation ideal input, so although ISI is knotn the duration ofthe initial input must be estimated
Becamuse it is known that the initial Pn k is -simlar to an imput with that ISl. 150 time units are
used.

a i i L' ' a 3 T 1

0

~II

0 10 20 30 4 50 60 - s 90

TIME

Fio ,. ." T( idcal input. Thc scallopd effects are due to each smaller displacement
r :f it. final destination.

4.4 CE Network in Isolation

The CE J.,er provides a localized representation of the diffuse activation. Recall that localized
output of flio .aver also provides the input to motion detectors. In addition. it supports the
iocalized ma..;:i. im and sustaini- it in memory. thereby enhancing iterations of inputs to interact
on the diiiii-,,:. Aaver. After a brief period of time. feedback amplitude decreases and the system
forget! pa- it n,. The process of modifying the amount of activity that is fed back is introduced
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rF iert M. TC': l|ici;v InodsSO.4 I rmus spatial separation. Compare this to carrus

with thi- study. Before connecting the CE layer to the rest of the system. there were experiments
with the effects of a decaying B parameter e Equations (7) and (8)L The activation profile
depicted in Figure 14 comes from an apparent motion experiment in which the initial stimulus
occurs at node 50. causes acirity growth. and begins to decay as a second stimulus is applied at
node 5 The activity profile of the enhancement endfeet (C, ) is sampled when the second .imulus
is just beginning to affect the diffusion layer. Note that with a large B = 5001. the second input
-survive- the CE layer but with smaller B. e... > 1001. the second input is quenched. This property
suppresses low-level background noise. Also. note that the extent of the feedback decre3ses with
decreas-ed B. This is important in replicating the effect of an extinguished single light in the gamma
motion experiment.

4.5 Complete DEB Network

The nemx serie- of examples is the result of working with the entire network. Once the SERC
ideal input i: found. it is used to demonstrate the gamma and the long-range apparent motion
effects.
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Figure 14. Feedback activation profiles. As B decreases so does the extent of the feedback
until the network selects only the maximum node. By causing B to decay between inputs.
the network forgets earlier stimulation and reproduces the extinguishing half of the gamma
effect.

4.5.1 Ideal Input Source Function

A converged, fourth-generation SERC ideal input is calculated for spatial separation of nine
nodes using the alternate decay formulation for B [Equation (8)]. The resulting input function
is shown in Figure 15 and resembles the firing pattern of a neuron that is depleting its stored
K-. This shape is caused by the combination of two constraints: the greedy algorithm described
in Section 4.3 administers as much charge as possible at each time unit. and the evaluation for
multiple maxima is enforced only at the output of the CE layer; in this case. every five time units.
The second peak in activity occurs in the long-range apparent motion example when the second
light source has completed its motion from the first to the second location, and the new criteria
(that there must be no backward motion of the activity maximum) engages. This input is used for
all the remaining examples.

4.5.2 Static Inputs

Figure 16 represents the response of the CE layer to a static 1-D "image" with structure
on multiple scales. In this image there are three point-source inputs at nodes 45, 49, and 58.
In the following experiments, sampling by the CE layer occurs every five time units. so only the
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Figufr 1.5. SER C ideal input'source function. !Converged (fourth- generation) for spatial
separation.-ofninc nodes betuween inpufs-uwith an ISI of '150time units.

output from, that laver at t =5ni. (n =1.2.3 .. . is illustrated. Excerpts ,are shown,-of the CE
layer response at increasing time: Initially (t = 5) the network.-responds with-maxima at. each of
the three inpIT~. then (t =10) only two maxima survive as the two closest sources interact and
merge on the diffusion laver. aind finally (t = 50) All three merge, and the network displays only,
a single -miaxiiuuu on this, coarser scale. Ast -- oc this, network generates a maximum that can
be used-a.,i a owus of attention near thie geometric mean of the input locations. Note that if one's
eves follow~ed ute At)olute mAximnum value. concentration would first be on tbe -smaill, then the
larger-scale imeractions;

4.5.3 Gamma Motion

The next vxperiment demonstrates the gamma effect (Figure,17). Stimulus is administered to
the input eiivet. activity accumulates in the diffusion layer and percolates up to the, enhincement -

endfeet. which activate the CE layer. This layer initially responids with narrow feedback, then
spreads thle spatijal extent of the, feedback in response to the spreading of input activity, and finally
collapses the ,~patial extent back to a point-source. The amplitude of the feedback diminishes
with time. permitting, the-systemi to-forget ancient inputs. The result is a blob that expands and
contracts withi time.
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Figure 16. Multiscale grouping. Three inputs at nodes 45, 49. and 58 interact on in-
creasing scale with increasing time. Discrete activation on the CE layer is pictured as
continuous curt-cs.

4.5.4 Long-Range Apparent Motion

The dynamic image in the long-range apparent motion experiment described above was ex-
amined. concentrating on motion effects. At t = 0, a source is activated at node 50. and 150 time
units later a second input is activated at node 59. At node 50. the CE layer initially produces a
maximum. which moves through node 51, skips 52 to 55. moves through 56. skips 57. and completes
its journey at nde 58 (Figure 18).

Although input functions that provided smoother motion have been demonstrated, this ex-
ample is not az- smooth as had been hoped. Two possibilities exist: (1) the second input might
have occurred to, soon after the first. and the system responded with a "jumping maximum" such
as the center black rectangle in Figure 3: and (2) the network parameters may not have been cor-
rectly set. By increasing Q1 in Equation (5). the output of the CE layer can be better localized.
which would inhibit motion by producing increased support in the area of the current maximum
value. thus cau:-ing slower motion that could smoothly move through all intermediate nodes. Later
experiments will examine this possibility.
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Figurr 17. Gamma effect. A single input initially induces a narrow maximum. which
cxpand, stabdizes. and extinguishes after the input is turned off at t = 150. Discrete
activation on th( CE layer is pictured as continuous curves.
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Figure JS. Long-range apparent motion between two inputs. The maximum of activity
on the CE layer moves betwueen the initial source located at node 50 and the final source
located at node 59. generating the appearance of long-range motion. Discrete activation
on the CE layer is pictured as continuous curves. In ihis case. the maximum of activity
exhibits a jump. as in Figure 3.
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5. WORK IN PROGRESS

A dynamic model has been introduced for a two-layered network that spatiotemporally groups
its inputs on multiple scales as a function of time. Moreover, it generates a long-range apparent
motion between spatially separate inputs introduced at different times.

Current research includes a return to the simpler experiments with constant or exponentially
decaying input source functions. such as those that were originally performed with the diffusion
network in isolation. This approach leads to more rapid understanding of the network and its
capabilities while sacrificing the search techniques that lead to an input with known qualities.
It had been hoped to find an input that would produce smooth motion over a range of spatial
separations for the entire network. and significant time was spent tweaking the system to achieve
this end. If this method had been successful. this input function would then have been perturbed to
see how it could be modified while still producing the same result. Unfortunately, although initial
experiments with the diffusion network in isolation proved successful, a final represention of the
input functioi) that would produce smooth motion in the final system was not found. There are a
number of possible reasons: the most likely is that a region of space-time outside the smooth-motion
regime depicted in Figure 4 was being examined. By using simple input activation profiles such as
constant. Gaus-sian, and exponentially decaying input functions as a guide to the correct domain
of parameter;. along \\ ith the ideal input tool to find an input that will produce smooth motion. it
is hoped the DEB model will fully reproduce the psychophysical results listed.

Future work will include the psychophysical phenomena not yet discussed: split, merge.
and peripliorn! tflectu, will all be considered. Once the split and merge effects are working, the
peripheral erect- should be simple to implement. as these are believed to be due to the topological
preprocesim,:, :ue before the data arrives at the network. To simulate the biological system. the
data will w -,_,arithmically mapped before administering activity to the system: this procedure
is expecte, ,produce the peripheral psychophysical results. The final effort to be explored is
the 1-D Ter: ,ffect: when its results can be reproduced, the DEB model will be extended to two
dimension- oriented inputs.
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